Registration information of Carbon Footprint of Products

1. Prod	1. Product information						
1.1	Registration number	CR-DG01-16007	1.7 Product photo				
1.2	Product name	Canon imageRUNNER ADVANCE 4225 G					
1.3	Product model	Canon imageRUNNER ADVANCE 4225 G					
1.4	Main specifications of product	Multifunction Copiers Print speed (BW): 25 ppm (LTR) 565mm(W)×708mm(D)×902mm(H) Product weight: Approximately 77.9kg					
1.5	CFP quantification unit	Per unit product	20 -0				
1.6	Date of release	2/17/2016	Cassette Feeding Unit is				

2. Con	2. Company Information				
2.1	Company name	Canon Inc.			
2.2	Phone number	+81-3-3758-2111			

3. CFF	quantification results, and	contents of CFP decIration			
3.1	CFP quantification results	950	$kg\text{-}CO_2e$ (CFP quantification results can be slightly different from sum of the following breakdown for rounding of fractions.)		
	Breakdown (by life cycle	e stage, by process, by flow, etc.)			
	Raw material acquisition stage	500	kg-CO₂e		
	Production stage	110	kg-CO₂e		
3.2	Distribution stage	26	kg-CO₂e		
	Use & maintenance stage	250	kg-CO₂e		
	Disposal & recycling stage	62	kg-CO₂e		
	Value in a mark, and cor				
		<contents></contents>	<unit a="" for="" in="" mark="" the="" value=""></unit>		
	Value in a mark	950kg	Per unit product		
3.3	Contents of additional info.	Calculated in the following conditions; - the standard scenario for Multifunction Device (EP type), - Print volume: 0.36 million sheets, - US market, - Printing paper is not considered. Distributio n stage 3% Disposal & recycling stage 6% Use & maintena nce stage 26% Distributio n stage 3% Productio n stage 12%			
3.4	Remarks		_		

4 Into	4. Interpretation of CFP quantification results					
T. IIIC	ipretation of or i quantine					
		·CO2 emission in Raw material acquisition stage is the largest as 53%. It is also important to reduce the size and weight, and to use low environmental impact materials.				
4.1	4.6. 4.	·CO2 emission in Use & maintenance stage is the second largest as 26%. It is important to save energy during product usage and to make the life time of consumables longer. The condition in this CFP evaluation can be different from the one which the user operates under. A choice of the use condition (print mode, print conditions and so on) can reduce the CO2 emission during Use & maintenance stage.				
		'We evaluated the CFP with Canon's own data of raw materials weight and the general basic unit for the parts because it is difficult to collect the data for a couple of thousands of parts. Accordingly, the results may be different from the specific product specification.				

5. Con	5. Conditions of quantification				
5.1	Name of approved CFP-PCR	Imaging input and/or output equipment	5.2	Approved CFP-PCR ID	PA-DG-01
5.3		Basic secondary data v.1. is used if the items don't o			ailable secondary data v.1.01 01.

6. Verification information					
6.1	Verification method	CFP System certification	6.2	CFP system certification No.	SCN14002
6.3	Verification ID	CV-DG01-16007	6.4	Valid period of verification	2/4/2016

7. Program information					
7.1	Program name	Carbon Footprint Communication Program	7.2	Web site	http://www.cfp-japan.jp/
7.3	Program operator	Japan Environmental Management Association for Industry (JEMAI)	7.4	Andress	2-1, Kajicho 2-chome, Chiyoda-ku, Tokyo 101-0044

Γ	8	Remarks	_
ı	Ü	Remarks	

^(*) For secondary data, refer to the following page on the CFP website. http://www.cfp-japan.jp/calculate/verify/data.html